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We consider a process of two classes of particles jumping on a one-dimensional 
lattice. The marginal system of the first class of particles is the one-dimensional 
totally asymmetric simple exclusion process. When classes are disregarded the 
process is also the totally asymmetric simple exclusion process. The existence of 
a unique invariant measure with product marginals with density p and 2 for the 
first- and first- plus second-class particles, respectively, was shown by Ferrari, 
Kipnis, and Saada. Recently Derrida, Janowsky, Lebowitz, and Speer have 
computed this invariant measure for finite boxes and performed the infinite- 
volume limit. Based on this computation we give a complete description of the 
measure and derive some of its properties. In particular we show that the 
invariant measure for the simple exclusion process as seen from a second-class 
particle with asymptotic densities p and ). is equivalent to the product measure 
with densities p to the left of the origin and ). to the right of the origin. 

KEY WORDS:  Two-species process; asymmetric simple exclusion; second- 
class particles. 

1. INTRODUCTION 

The  s imples t  way  of  def in ing the two-species  system is by using the basic  

coup l ing  of  the to ta l ly  a s y m m e t r i c  s imple  exclus ion  process  (SEP) .  W e  

define the simple exclusion process ~,~ {0, 1} z ( t>~0)  as follows. At  each 

site x e2V we a t t ach  a r a n d o m  c lock  that  r ings acco rd ing  to a Po i s son  

process  o f  p a r a m e t e r  1. The  c locks  are  mu tua l l y  independent .  W h e n  the 

c lock  o f  an occup ied  site x rings, if  x + 1 is empty ,  the par t ic le  at x j u m p s  
to x + 1. If  x + 1 is occupied ,  n o t h i n g  happens .  Thus ,  in this process,  the 

par t ic les  are  genera l ly  dr i f t ing to the right.  I f  one  cons iders  two  initial con-  
figurations /71 and  q 2 e  {0, 1} z such tha t  q l (x )~2(X)  for all x, and  uses 
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the same clocks for both  realizations, then one has a coupled process 
(r/l,v/2) with the proper ty  that  q~(x)<~q~(x) for all x and all t~>0. (12"13} 

The two-species process (a , ,  ~ , ) ( t  >~0) is defined by putting tr,(x)= vl~(x) 
and G ( x ) = q ~ ( x ) - v / 1 ( x ) .  The a particles are the first-class particles and 
the ~ particles are the second-class particles. The reason for these terms is 
that, when a clock rings for a first-class particle at site x and a second-class 
particle is at site x +  1, the particles interchange positions, whereas if a 
second-class particle is at x and a first-class particle is at x + 1, they do not 
move. It is easy to see that  the two-species process is Markovian.  

In this paper  we are concerned with the invariant measures for the 
two-species process. Since the marginal  processes tr, and a,  + r are simple 
exclusion processes, the corresponding marginal  measures .of any invariant  
measure for the two-species process must  be invariant for the SEP. Now,  
the invariant  measures for the SEP are convex combinat ions  of the product  
measures vp with density p ~ [0, 1] and the blocking measures concen- 
trated on the configuration ...000111... and its translates. Let us say that  a 
distribution of (a, ~) has good marginals if, for some p ~< 2, its a marginal  
is vp and its a + ~ marginal  is v;. It is easy to construct  a product  measure 
n2 for (a, ~) with good marginals.  Ferrari  et al. (9) proved that, for the two- 
species process (a,,  G), there exists a unique invariant measure /~2 with 
good marginals,  and that  the process started with the product  measure n2 
converges to /~2 as t ~ ~ .  Derr ida etal. ~4) have recently computed  the 
invariant  measure /~_, in finite boxes and, performing the infinite-volume 
limit, they have investigated/~2. In a sequel, Speer ItTI makes  this approach  
rigorous. 

One important  fact discovered by Derr ida  et aL (4~ is that, under the 
invariant  measure/a  2, the distribution to the right of a second-class particle 
is independent of the distribution to its left. This suggests studying the pro- 
cess "as seen from a second-class particle." To make  this precise, assume 
that  at time t = 0 there is a second-class particle at the origin and let X, be 
its position at time t. The process as seen from this second-class particle is 
(rx, a,, rx, G), where r.~ denotes translation by x. Thus, 

(rx, a,(x), rx, G ( x ) ) = ( a , ( x + X , ) ,  G ( x + X , ) )  fora l l  x e T /  

Now assume that  the initial distribution /~ of the two-species process is 
translation invariant,  and that  it has a positive density of second-class 
particles. Then, at t ime t, the process as seen from a second-class particle, 
started with the measure # condit ioned to having a second-class particle at 
the origin, has the same distribution as the two-species process started with 
the uncondit ioned measure /a, but itself condit ioned to having a second- 
class particle at the origin at time t. This means that, when the density of 
second-class particles is positive, the invariant measures for the two-species 
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process have a corresponding invariant  measure for the process as seen 
from a second-class particle. ~9) But in fact the process as seen from a 
second-class particle is richer: it has invariant  measures with only a finite 
number  of second-class particles with no corresponding measure in the 
two-species process. 

Our  main contr ibution is a complete description of the invariant 
measures for the two-species process as seen from a fixed second-class 
particle. This description is based on computa t ions  in Derr ida et al. ~4~ We 
consider two densities 0 < p ~< 2 < 1 and construct  a measure/a'_, =/a~(p, 2) 
that is invariant  for our process (see Theorem 1). The parameters  corre- 
spond to the asymptot ic  densities (as x ~  + o r )  of the first- and the first- 
plus second-class particles. The cases p = 0 or ). = 1 are easier and were 
considered before. In the part icular  case in which p = 0 or  2 = 1, either the 
a marginal  or  the a + ~ marginal  is trivial. Moreover ,  in this case, the other 
marginal  is trivial if p = 2 and it is the SEP if p < 2. In the latter case, the 
process corresponds to the SEP as seen from a tagged particle, as studied 
by Ferrari  ~6~ and De Masi et al} 31 An impor tant  general proper ty  of the 
measure #~ is " translat ion invariance," in the sense that it is the same seen 
from any second-class particle. When p < 2 this "translat ion invariance" 
implies that  there exists a unique translat ion-invariant  Sh such that/a~ is/~2 
condit ioned to having a second-class particle at the origin. When 2 = p, the 
average distance between two successive second-class particles is infinite. 
This implies that there is no translat ion-invariant  measure/~2 such that/Y, 
is #2 condit ioned to having a second-class particle at the origin. 

Recall that  our particles are drifting to + o0. The definition of the two- 
species process is such that a first-class particle can overtake a second-class 
one, but the other way around is prohibited. Let us start  the process with 
a second-class particle at the origin, and, along the evolution of the 
process, we refer to this particle as the zeroth second-class particle.  We 
consider the second-class particles from left to right, so that  we may speak 
of the ith second-class particle for any i e Z .  If  one identifies the two 
classes of  particles starting from (and to the right of) the ith second-class 
particle (i > 0), one has an opera tor  Oi acting on the configurations (a, ~), 
which commutes  with the semigroup corresponding to the evolution. 
Similarly, for any fixed j < 0, one can identify holes, i.e., empty  sites, with 
second-class particles starting from, and to the left of, the j t h  second-class 
particle to obtain an opera tor  T j  that  also commutes  with the semigroup. 
Hence, applying any (or  both)  of  these operators  to the "translat ion- 
invariant" s tat ionary measure/a~,  we obtain another  invariant measure (see 
Theorem 2). Incidentally, these new measures are clearly not "translation 
invariant." Now, identifying first- and second-class particles to the right of 
the particle at the origin and holes and second-class particles to the left of  
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it, we obtain the invariant measure for the process as seen from a single, 
isolated second-class particle. When p < k this corresponds to a shock in 
the SEP. t7'9~ When p = it there is a reminiscence of the shock, as the density 
to the right of the second-class particle is bigger than the density to the 
left of it and the approach to the asymptotic density it, which equals p here, 
is slow. ~41 If one makes the identification for all but two second-class 
particles, one gets that the distance d between the two second-class par- 
ticles is, following the terminology of Derrida et al., ~4~ a "bounded state" 
even when it = p. Indeed, the distribution of d is the same as the distribution 
of the distance between two successive second-class particles under p~. 
It turns out that this distance has the same distribution as the hitting time 
of 1 for a nearest-neighbor random walk with jumps in { -  1, 0, 1} with 
probabilities p ( l - i t ) ,  1 - i t ( 1 - p ) - p ( 1 - i t ) ,  and i t ( l - p ) ,  respectively 
(see Lemma 2.5). 

Our approach relies on the work of Derrida et al. 14~ and Speer, ~7~ but 
we work directly in the infinite volume. In Section 3 we describe completely 
the measure p~ and show that it is invariant for the process as seen from 
a fixed second-class particle. Derrida et al.  ~4) state the following remarkable 
property of the measure p~: the distribution of first-class particles to the 
right of the tagged second-class particle is the product measure vp with 
density p, while the distribution of empty sites to the left of the tagged 
second-class particle is the product measure v~_;. with density 1 - ) . .  
Speer ~ proves this statement and here we give an alternative proof of this 
fact by showing that one may construct /~2 as follows. We first put a 
second-class particle at the origin and distribute the first-class particles to 
the right of the origin according to the measure vp. Then we give a recipe 
for deciding where to put the second-class particles among the unnoccupied 
sites. To the left of the second-class particle at the origin the positions of 
the empty sites are chosen according to the product measure vl_;. and 
a similar recipe is used to decide where to put the second-class particles. 
(See Proposition 1.) 

When it > p there exists a unique translation-invariant measure P2 with 
the property that it coincides with p~ when it is conditioned to having a 
second-class particle at the origin. As explained above, the invariance of p~ 
for the process as seen from the second-class particle implies that the 
measure/a 2 is invariant for the two-species process. Using the property that 
the first-class particles to the right of the tagged second-class particle are 
distributed according to a product measure, we show that P2 has good 
marginals (cf. Theorem 3). This already followed from the infinite-volume 
limit of Derrida, t4~ but in a somewhat indirect way. We also show that it 
is possible to construct a coupling/~ with marginals p~ and P2 in such a 
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way that the number of sites where the two marginals differ is a random 
variable with a finite exponential moment. (See Theorem 4.) 

Let vp.;~ be the product measure with density p to the left of the origin 
and density 2 to the right of the origin. Using the results of Ferrari et al., ~19~ 

Ferrari ~71 proved that the SEP as seen from a second-class particle starting 
with the product measure vp.;. presents a shock: uniformly in time the 
asymptotic densities are p and 2 to the left and right of the origin, respec- 
tively. Indeed the process with a unique second-class particle, started at the 
origin, with initial product distribution vp.;. can be coupled to the two- 
species process with initial product distribution g2 (with marginals vp and 
v;.) in such a way that at all times the single second-class particle of the first 
process has the same position as the tagged second-class particle in the 
second process. As mentioned above, this can be done by identifying first- 
and second-class particles to the right of the origin and empty sites and 
second-class particles to the left of the origin. Applying the results for the 
two-species process to the shock in the SEP, Derrida et  aL ~4~ have com- 
puted the rate of convergence of the density of the shock to the asymptotic 
densities p and 2. We make a further step proving that the invariant 
measure p' for the process as seen from a single second-class particle has 
the following property. One may construct a coupling between/~' and vp.~ 
in such a way that the number of sites where the two marginals differ is a 
random variable with a finite exponential moment. This implies in par- 
ticular that p' is equivalent to vp.;. (See Theorem 5 and its corollary.) 

Let us now mention some related results. Speer t17~ described the set of 
all invariant measures for the two-species process and showed that the 
invariant measure P2 is not Gibbsian. Ferrari and Fontes 18~ computed the 
asymptotic variance of the position of the second-class particle for the pro- 
cess with initial distribution /~, and they studied the density fluctuation 
fields for the exclusion process with a shock initial condition. 

This article is organized as follows. In the next section we prove three 
basic lemmas (Lemmas 2.1-2.3) that are used in later sections. In Section 3 
we give our construction of the measure/~ and we prove Theorem 1, which 
asserts that/a~ is invariant for the process (rx, tr ,, rx,~,). Also in this section 
are Theorem 2, concerning other invariant measures constructed from p~ 
with the aid of the operators ~ and ~j,  and Proposition 1. In Section 4 we 
deal with the invariant measure/~z for the process (a,, ~,), and prove that 
it has good marginals (cf. Theorem 3). In that section we also prove 
Theorem 4, concerning the coupling/~ between P2 an d /~  mentioned above. 
The last section is devoted to proving Theorem 5, on the coupling between 
p' and vp.~.. 
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2. A DISTRIBUTION ON THE SET OF 
FINITE CONFIGURATIONS 

Let Y be the space of finite co~gurations of O's and l's, i.e., 

Y =  ~ {0 ,1}"=  { ~ ,  0, I, 00, 01,10, 11,000,...} 
n ~ > O  

Usually, we think of a sequence ( in Y of length n as indexed by { I ..... n }. 
In this section we define.and study a certain probability distribution p on 
the space Y. This distribution will be used in the next section to construct 
the invariant measure for the system as seen from a second-class particle. 

Let ~ e Y be given. We write N(~) for the length of ~, and K(~) for the 
number of l 's in (. Formally, we have N ( ( ) = n  if and only if ( ~  {0, 1}", 
and K ( ( ) =  X?Ntr ((X). An important definition that we shall need is the Z . . , X  ~ 1 

following. For (E Y, let M(()  be the number of distinct configurations that 
can be obtained from ( by shifting ones to the right, including ~ itself Thus, 
for example, we have M(100)= 3, M(0011)= 1, and M(1010)= 5. 

We may now define the distribution p on Y. In fact, we shall define a 
distribution p = pp.;. for each 0 < p ~< 2 < 1. Let p and 4 as above be fixed. 
Given ( e  Y, we put 

p(~)=pp.x(?',)=4(1 - p )  M(C)(4p) Kcr [(1 - 4 ) ( 1  _p)]U~qI-K~ (2.1) 

We show in Lemma 2.1(i) below that p does indeed define a probability 
distribution over Y. It is with the aid o fp  = ppj. that we shall construct the 
invariant measure for the two-species process as seen from a second-class 
particle when the asymptotic densities of the first-class particles and the 
first- plus second-class particles are, respectively, p and 4. 

The rest of this section is devoted to proving that p gives a probability 
measure over Y and to the study of some simple properties of the space 
(Y, p) and of the function M(~) (~ ~ Y). In particular, we shall consider the 
random variable N = N ( ~ ) ,  that is, the random length of a sequence 
drawn from Y according to p. The main results of this section are given in 
Lemmas 2.1-2.3, which we now state. 

Lemma 2.1. Letp ,  2 ~ ( 0 , 1 ) b e f i x e d .  T h e n ( i ) ~ v p ( ( ) = l i f a n d  
only if p~<2. Assuming that p~<2 and, writing for the expectation in 
(Y,p) ,  we have (ii) if p < 2 ,  then E ( N + I ) = I / ( 4 - p ) ,  and (iii) if p = 4 ,  
then E(N + 1 ) = ~ .  Finally, (iv) if p < 4, then N has a finite exponential 
moment. In other words, there exists 0 > 0 such that 

~ou < ov (2.2) 
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The distribution of the random variable N is given in Lemma 2.5 
below. The generating function of N is given in the following lemma. 

k e m m a  2.2. Let p ~< 2. The generating function of N is given by 

1 
~_s u = ~ { 1 - cs - [(1 - cs ) 2 - 4abs 2 ] l/E} (2.3) 

where a = p ( 1 - - 2 ) ,  b = 2 ( 1 - p ) ,  and c =  1 - a - b .  The closed disc Isl ~< 
{1- ( x / ~ - x / ~ )  ~ } - i  is its domain of convergence. 

Our next lemma, Lemma 2.3, is inspired by Derrida et al. 14~ 

Lernma 2.3. For all (, yeY,  we have M((IOv)=M(~ly )+M(~O) , ) .  

We now define a random walk on the integers that will be important 
m the sequel. Let X~,X2,..., Yj, Y2,..., be independent 0-1 random 
variables with [E(Xi} = 2 and E( Y i ) = p  (i>~ 1). Put Z ~ = X ~ -  Y~ (i>~ 1), and 
let 2 ,=Y ' .~<~ , ,  Zi(n>~O). Note that then (Z , )  o is a random walk on Z, 
and let T =  inf{ n >/0: 2 ,  = 1 } be the hitting time of the event { 2,, = 1 }. 

The rest of this section is devoted to proving the lemmas above. The 
other sections of this paper may be read independently from what follows. 
Our first auxiliary lemma is the following. 

L e m m a  2.4. For all integers n, k/> 0, we have 

l___~ {n']{n + l )  (2.4) 
~,, M ( ( ) = k  + 1 \ k ] \  k 

where the sum ranges over all ( e Y  with N ( ~ ) = n  and K ( ( ) = k .  

We defer the proof of Lemma 2.4 until later, and pass on to a result 
that is crucial in the proof of Lemma 2.1(i). 

For a finite configuration ( e  Y, recall that N(() denotes its length and 
K(~) its number of l's. For integers n and k, set P,.k = ~.~ P((), where the 
sum ranges over all ( e Y  with N ( ( ) = n  and K ( ( ) = k .  Note that once we 
know that p is a probability measure on Y, the quantity P,,.k is simply the 
probability that a random configuration ( e Y  has length n and k l's. 
In particular, the lemma below in this case simply states that P { N =  n} = 
P { T = n + l } .  

Lemma 2.5. Let 2, p e (0, 1) be fixed. Then, for any n/> 0, we have 

~ p , j , = P { T = n +  l} (2.5) 
k 
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Proof .  By Lemma 2.4, we have 

1 (n+l)2k+~(l_2)"--k(n+ 
P"'~ = ~+--1 k + l  k 

1 

n + l  
P(W~ = k +  1) P (W2=k)  

1) pk(1 _ p).+ l - k  

where W~ and W z are two independent binomial random variables with 
parameters n + 1 and 2 and n + 1 and p, respectively. Now, summing over 
all k, for n >i 0 we have 

~ p , . k = _ ~ _ ~ l  p { W ~ _ W 2 = I } = n _ ~ I  P { 2 , + ~ = l }  (2.6) 
k 

where (2,,)~ is the random walk introduced above. On the other hand, 
recalling that T is the hitting time of 1 for that walk, we have 

P{T=n+l}=_ 1-5-~, P { Z . + , = I }  (2.7) 
n - t - i  

for all integers n >1 0. Identity (2.7) is Exercise (IV.12) of Spitzer, ~8~ but for 
completeness we give a combinatorial proof for it in Lemma 2.6 below. 
Lemma 2.5 follows from (2.6) and (2.7). �9 

R e m a r k  2.1. The Local Central Limit Theorem (or direct calcu- 
lations) and (2.7) imply that, when 0 < p = 2 < l ,  we have P ( T = n ) =  
[ c+o(1 ) ]  n -3/2 as n--+ oc, where c = c ( p ) > O  depends only on p. For the 
case in which p < 2, see Remark 2.2. 

Let us now prove (2.7). The proof below is entirely combinatorial and 
more elementary than the one suggested in Spitzer, ~81 which is based on 
Lagrange's inversion formula. 

L e m m a  2.6. Let (Vi) ~ be a family of i.i.d. {+ l ,0}- random 
variables and let ~'n=~.<i_<,, Vi(n>~O) be the associated random walk 
on 7/. Let T=inf{n: V,=  1} be the hitting time of {V,=  1}. Then 
P{T= n}  = n  -1 P{ IV,,= 1} for all integers n>~ 1. 

Proof .  We deduce this result from a lemma of Raney ~61 (see also 
Example 4 in Section 7.5 of ref. 10): if x = (x~ ..... x,,) is a sequence of 
integers with 21 ~i.<, x i=  1, then there is a unique cyclic permutation of x, 
say ( x j ,  xi+ ~ ..... x , ,  x~ ..... x j _  ~), all of whose proper initial partial sums are 
nonpositive, i.e., such that x j ,  x j  + xy+ ~ ..... x j  + . . .  + x j _  2 <~ O. 
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Let x = (x I ..... x,,) be a { ___ 1, 0}-sequence with ~1 .<i_<, x ;=  1, and let 
Ex be the event that ( V~,..., V,,) is a cyclic permutation of x. It is simple to 
check, and in fact it follows from Raney's lemma, that all the n cyclic 
permutations of x are distinct. Also, clearly, the probability that (V;)]' is 
any of these n permutations is ( l /n)P(Ex) .  Now, by Raney's lemma, 
exactly one of these permutations corresponds to the event { T =  n}, and 
hence Lemma 2.6 follows. �9 

We may now prove Lemma 2.1, the first main result of this section. 

Proof of Lemma 2.1. (i) We need to prove that Z,,.k P,,.k = 1 if and 
only if p~<2. In view of (2.5), we have Z , , , k P , . k = Z , P ( T = n + I ) =  
P ( T <  o0), where T is the hitting time of 1 for the walk (2,)~:' defined just 
after Lemma 2.3. It now suffices to notice that T <  oo almost surely if and 
only if the walk ~ ~ (Z,,)o has nonnegative drift. This proves (i). 

We assume from now on that p ~< 2, and rewrite (2.5) as P { N = n }  = 
P { T = n + I }  (ne2V). Let us now prove (ii). Suppose that p < 2 .  Then, 
again considering the random walk 2 ,  = 5Z1 _<;_<, Z~ and the hitting time T, 
by Wald's identity we obtain 1 = E ( 2 r ) =  E(Z~)A:(T)=(2-p)IF(T) ,  and 
hence II:(N + 1 ) = F(T) = 1/(2 - p), as required. 

To see (iii), note that for 2 = p the expected hitting time ET is infinite. 
Finally, to prove (iv), we prove that P { N = n }  decays exponentially 
with n. By (2.5) and (2.7), we have 

P{N=n} =P{T=n+ 1} =(n+ l) -1P{Z.+I= 1} 

for all integers n/> 0. But then it suffices to notice that this last probability 
is exponentially small, since F ( Z a ) = 2 - p  > 0. Indeed, if n is large enough 
with respect to 2 - p ,  we have that 

P(2,,+ 1 = 1)~<exp 5 ( 2 _ p +  l ) n  (2.8) 

by Hoeffding's inequality. (11"15) �9 

Proof of Lemma 2.2. The result is obtained by a standard applica- 
tion of Wald's identity to the stopping time T, ~21 and standard analytic 
continuation arguments. �9 

Remark  2.2." It follows from Lemma 2.2 that P { N = n }  decays a 
little faster than is suggested in (2.8) in the proof of Lemma 2.1(iv). The 
rate of exponential decay of the distribution of N when 2 > p is given by 

lim sup P { N =  n} ~/" = 1 - { [2(1 - p ) ]  1/2 _ [p( l  - 2)] I/2}2 
n ~ o o ,  
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We now turn to the proof of Lemma 2.3. Let (E  Y be given. Write 
, g ( ( )  for the set of configurations that can be obtained from ( by trans- 
lating ones to the right. Thus M(()  is simply the cardinality I ,g(()]  
of ,A[((). If  q e Y, then r/( will denote the sequence in Y obtained by the 
concatenation of r /and (. Finally, if X c Y, we let X( = {r/l: q �9 X}. 

Proof of Lemma 2.3. We fix ( e Y ,  and use induction on N(y). If 
N(y)--0 ,  that is, if y is the empty sequence, then it suffices to notice that 
Jr = Jr ' ( (  1)0 w ~r 1, where the union is clearly disjoint. Thus the 
result follows in this case." Assume now that N(y)>/1, and that the result 
holds for smaller values of N(y). We now analyze two cases. 

Case I. The sequence y does not contain the segment 10. In this 
case we clearly have that y =0k l  z for some k, l~>0. If l~> 1, using the fact 
that J t ' ( q l ) =  Jg(q)1 for any r /eY and the induction hypothesis, we are 
home. Thus we may assume that 7 = O k for some k i> 1. Now note that 

J g ( ( l o o k )  = . ~ / ( ( )  10 k+l  W a///((O) lOkk) - '" k.),~/'((O k+l) 1 (2.9) 

where clearly the sets on the right-hand side are pairwise disjoint. Similarly, 
we have 

J [ ( (  lOk)---- og(~) IOkw ~ ' ( ( 0 )  lOk-~ W - ' .  WJ[(~O k) 1 (2.10) 

with all the unions disjoint. We now observe that, by (2.10), the elements 
in all but the last set on the right-hand side of (2.9) are in natural one-to- 
one correspondence with the elements in ~/((lOk). Moreover, since the 
elements in the last set on the right-hand side of (2.9) correspond to the 
elements in J#(~O k+ ~)= JC((Ov)in an obvious way, we have that 

M(C lOy) = I-g(~ lOk + ~)1 = ]dt'(~ lOk)l + I,g(CO k + ~)[ = M(~ IT) + M(~OT) 

as required. 

Case 2. The sequence y contains the segment 10. In this case let us 
write y = y~ lOy2. Using the induction hypothesis, we have that 

M(~ lOy) = M(( lOy~ lOy2) = M((  lOy~ 172) + M((  lOy~ Oy 2) 

= M(( ly~ ly2 ) + M(~O7~ ly2) + M(~ 17~Oyz) + M(~O),~Oyz) 

= M(~ 17, 1072) + M(~0y, 10y2) = M(~ ly) + M(~0y) 

completing the induction step, and hence the proof. �9 

To close this section, we need to prove Lemma 2.4. To this end, we 
consider a function R(~) (~eY) ,  implicit in ref. 4, which will turn out to 
give an alternative combinatorial description of the quantity M(~). It is 
using this description that we shall prove Lemma 2.4. 

Let W=(Wi)'~ be a {+l ,O}-sequence and L=(Li) '  ~ a 0--1 sequence. 
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We say that  ( W, L) is a labeled closed walk of length n if (i) W is a closed 
walk on Z+ starting at O, that  is, if all initial partial  sums Z t ~ ; ~ / W i  
(0 ~<j ~< n) are nonnegative and Z,~< i~,, Wi = 0, and (ii) L is such that, for 
all 1 ~< i ~< n, if W~ = 1, then Li = 1, if IV,. = - 1 ,  then Lg = 0, and if W~ = 0, 
then L;~  {0, 1 }. For  brevity, we refer to a closed walk on Z+ starting at 
0 simply as a closed walk. Given ( E  Y, let ~ ( ( )  be the set of  all labeled 
closed walks ( W, L) with L = ~, and put R(()  = I~,(~)1. 

Proof of  Lemma 2.4. We start by proving the following claim. 

Claim. For  all ~, ) ,eY,  we have R((IO),)=R((IT)+R((O),).  

Proof of  the Claim. Let (, y e Y be fixed. Suppose W =  (W i) ~ is a 
closed walk for which (W,(10) , )  is a labeled closed walk. Assume 
W= W~l)w~ w2 W (2), where W ~11 and W (2) are { _+ 1, 0}-sequences of  length 
N(( )  and N(y), respectively, and wt, w2 ~ { _ 1, 0}. We put 

((W~I)OW (2), ~ly) if ( w l , w 2 ) = ( 0 , 0 )  

~(WU)OW (2),~Oy) if ( w l , w z ) = ( l , - 1 )  
~ 0 ( W , ~ 1 0 7 ) = ) ( W ( I )  IW(2) , ~ l y )  if ( w l , w z ) = ( l , 0 )  

I . ( W ( ~ ) ( - 1 )  W(2),~0~') if (w~, w2)=(0 ,  - 1 )  

Then it is s traightforward to check that q~ defines a bijection between 
~(~107)  and ~ ( ~ l y ) u ~ ( ~ 0 ~ , ) ,  proving the claim. �9 

Putt ing together the claim above and Lemma  2.3, we deduce that  
R ( ~ ) = M ( ~ )  for all ~ e Y ,  since R(O~lt)=M(O~lt)= l for all k, l~>0. We 
are now ready to start  the proof  of L e m m a  2.4 proper.  The calculations 
below, which are included for completeness,  appear  in the Appendix of 
ref. 4 in a slightly different form. 

Let a and b i> 0 be integers. For  convenience, let us say that  a 0-1 
sequence L is of type (a, b) if L has a elements equal to 1 and b elements 
equal to 0. Let r.,b be the number  of labeled closed walks (W, L)  with L 
of type (a, b). Thus r..o = ~r  R(~) = ~ M(~), where the sum ranges over all 

with N ( ~ ) = a + b  and K ( ~ ) = a .  Moreover ,  if Wo is a given closed walk, 
let rwo..,b be the number  of labeled closed walks (W, L) with W =  Wo and 
L a sequence of type (a, b). Clearly r.,b=~_.wrw...b, where the sum ranges 
over all closed walks W of length a + b. 

The easiest way of handling the numbers  r~.~ and rw...b is by using 
generating functions. In the sequel, we shall consider bivariate formal 
power series with formal variables x and y. Let n >1 0 be an integer. We put 
~,,(x, y)=~.,,br~.bX~y ~, where the sum ranges over  all pairs (a,b) 
with a, b>~0 and a + b = n .  Moreover ,  for a closed walk W, we put 
~hw(X, y) = ~.~,b>~O rw.~.~x~Y b. Then clearly ~b,(x, y) = ~ w  ~,w(X, y), where 
the sum is over all closed walks W of length n. 

822/76/5-6-5 
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Now, if a closed walk W=(Wi)~ '  has 2q nonzero entries, it is 
immediate  that  we have $w(x, y)=(x+y)n-2qxqY q. Now note that  the 
number  of closed walks W = ( Wi)]' of length n with 2q nonzero entries is 

2q n 
( q + l ) - ' ( q ) ( 2 q )  

Indeed, to each such walk W, associate the walk W' tw, v,+~ with 
W'a = W~ for 1 ~< i ~< n and W'. + ~ = - 1. Then all proper  partial  initial sums 
of W' are nonnegative and Z I . < ~ . + ,  W [ = - 1 .  The number  of such 
sequences W' is 

(n+l ' - '  (2qq l ) ( n + l  )j\2q+l] 

Choose where to have the + 1 in W' randomly,  and then Raney's  l emma 
(cf. the proof  of L e m m a  2.6) tells us that  a fraction of l/(n + 1) of such 
choices will do for W'. Thus the number  of closed walks of length n and 
2q nonzero entries is 

l(~qq 
n + l  

l ' ] ( n +  1 "]= 1 1 n 

= ,  (~q)(n) 
q+ 1 q 2q 

as claimed. (Here and in the sequel the reader is referred to Chapte r  5 of 
ref. 10 for identities involving binomial  coefficients.) Therefore 

~k.(x, y)  = q~ 

-E 
q.J 

=E 
q,k 

-=E 
q,k 

=~ 
=~ 

1 2q n ~(q)(~q)~X+y,~.qxqy~ 
1 ~(?)(;q)(.-/q)xq+,y. ,q+,, 
1 (2q'](n'~(n--2q']xky.-k 

" ~  \ q ]\2qJ\ k - q ] 

1 n k n -  xky.- k ~(~)(q)(q~) 
1 ~(;)x.,. .Zq (;++1~r176 q,  

~(:)(.;')/.y., . 
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Therefore we have that 

rk ~  = + ( " ) ( " +  

and hence Lemma 2.4 follows. �9 

We close this section with the following remark. Recall that M(()  
appears in the definition of the probability measure p = pp.a on u and that 
we shall use p to construct invariant measures for our two-species asym- 
metric processes. We feel that the definition of M(()  makes it natural that 
this quantity should be involved in our construction. The alternative 
description of M(()  as a certain number of labeled walks on 7/+, given in 
the proof of Lemma 2.4 above, allows us to perform some calculations, and 
in particular to prove Lemma 2.4. 

3. I N V A R I A N T  M E A S U R E S  FOR THE PROCESS AS SEEN 
FROM A SECOND-CLASS PARTICLE 

In the sequel, we shall always have p~<2. Given 0 < p ~ < 2 <  1, we 
construct here a "translation-invariant" measure /~ ,  in the sense this 
measure is invariant under translations that leave a second-class particle at 
the origin. The parameter p corresponds to the asymptotic density of the 
first-class particles, and 2 corresponds to the asymptotic density of all the 
particles, with classes disregarded. In Proposition 1 we show that under p~ 
the distribution of first-class particles to the right of the origin and the dis- 
tribution of empty sites to the left of it are product measures with densities 
p and 1 - 2 ,  respectively. Another important and nice property of the 
measure p~ is that the distribution of the distance between two successive 
second-class particles is the same as the distribution of the hitting time of 
1 for the random walk 2 ,  introduced after Lemma 2.3. This observation 
and Proposition 1 give an alternative way of computing the decay of 
densities found by Derrida et  al. ~4~ (see Remark 3.2 below). 

In Theorem 1 we show that ~z~ is invariant for the process. We then 
construct other invariant measures for the process as seen from a second- 
class particle, randomly drawing a configuration according to /1~ and 
identifying first- and second-class particles to the right of the origin and 
empty sites and second-class particles to the left of it. In particular, we get 
the shocks when 2 > p: the invariant measure as seen from a single, isolated 
second-class particle. We may also obtain an invariant measure with only 
two second-class particles. If 2 = p, the distance between these two particles 
is a nondegenerate random variable with an infinite first moment. In this 
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case the corresponding random walk ~', is symmetric and the hitting time 
of 1 is finite with probability one but has an infinite mean. 

Let { ( ;} i~z=Y be a doubly infinite i.i.d, sequence of finite configu- 
rations with distribution P ( f ~ = f ) = p ( ( ) ,  where p(() is given in (2.1). 
A configuration (a, if) with distribution p~ is obtained by displaying the 
(~ on the integers separated by second-class particles. More rigorously, 
for i >/0, let N,. = N((~) + 1 and ~- i S~=Y'.j= o Nj. Let I(x)=i if and only if 
Si<~x<S~+l ( ieZ) .  Set a ( 0 ) = 0 ,  ~(0)= 1, and for x > 0  put 

a(x)={~Ot~X~(x-S~)) 

10 if x = S~(.~) 
~(x) = otherwise 

if Sl(x~<x<St~x)+~ 
if x = $I(.~1 

Define tr(x) and ~(x) for x < 0  analogously. The resulting distribution of 
(a, ~) is the measure/1~ that we seek. 

Theorem 1. Let 0 < p < ~ 2 < l .  The measure p~, is invariant for 
(rx, a,, rx,~,), the process as seen from a second-class particle. 

Before proving the theorem above, we construct other invariant 
measures using ll~ and identification operators. Let ~ = {xi} i~ z be the set 
of occupied sites of a configuration ~ of second-class particles with the 
origin occupied, where x o = 0 and xi < x~+~ for all integers i. Let ~ and ~g~ 
(i e 7/) be operators on configurations (a, ~) defined by setting, for all x e 7/, 

~(~(x) +~(x),  
�9 i(a(x),~(x)) = ((~(x),~(x)) 

~(a(x),O) 
~(a(x),~(x)) = t(~(x),~(x)) 

0) if x>~xi 
otherwise 

if x <~ xi 
otherwise 

In words, ~i identifies first- and second-class particles to the right of the 
ith second-class particle and ~u i identifies empty sites and second-class 
particles to the left of the tth second class particle. The next lemma, which 
is a straightforward generalization of an observation in Ferrari etal., (9) 
says that the identification operators commute with the process as seen 
from a second-class particle. The reason is that, owing to the nearest- 
neighbor interaction rules, namely, the total asymmetry of the jumps and 
the exclusion interaction, the second-class particles to the right of a given 
second-class particle behave as though they were first-class particles. For 
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the same reason, second-class particles to the left of a given second-class 
particle are just like empty sites. 

L e m m a  3.1. For any i >  0 and j < 0, the operators ~,. and ~j com- 
mute with the generator L~ of the process as seen from the second-class 
particle: 

�9 iL~ = L ~ , ,  ~yL~ = Li  ~T/j 

An immediate corollary of Lemma 3.1 is the following. Let ~r = 
~ _ ~  = I, the identity operator. 

T h e o r e m  2. For any 0 < p ~ < 2 < l  and any 0<i~<oo and -oo~< 
j < 0 the measures 

t 

are invariant for the process as seen from a second-class particle. 

Remark 3.1. For all 0 < p ~ < 2 < l ,  the m e a s u r e  /J2,1,--1 is the 
measure as seen from an isolated second-class particle. Moreover, the 
measure P~.z.-i is a measure with only two second-class particles. 

Proof  o f  Theorem 1. By a standard construction of the process/J3'1) 
it is sufficient to verify the equality 

f L'af(a, ~) dl21(a, ~) = 0 (3.1) 

for f =  l r { ( a ,  ~)A}, where A is a finite subset of 7/ containing the origin, 
(a, ~)a is the projection of the configuration (a, {) in A, and F is an 
arbitrary configuration of the form 

2y_k2y_k+12 ' ' ' 2y_12y12. . -2yk2 

with arbitrary k and arbitrary yiEY ( i = - k ,  - k  + 1 ..... - 1 ,  1 ..... k). Put 
1 -Y-7~-k [N(y,) + 1 ] and 1+ k _ = = ~ = ,  [N(y~) + 1]. Then, here, we have 
A = {x e 7/: 1_ ~< x ~< 1+ }. Moreover 1.{. } is the usual indicator function 
and 

L ; f ( a ,  r  ~ {a(x}[ 1 - a ( x +  1 ) ] [ f ( a  x'x+l, { x . x + , ) - f ( a ,  r 
x ~ O  . 

+ ~(x)[ 1 - - a ( x +  1)][1 - - ~ ( x +  1 ) ] [ f ( a ,  ~_..x+l)-- f(a,  ~)]} 

+ o'( -- 1 ) [ f ( r _ ,  t r -"~ r_ ,  ~ -,.o) _ f ( a ,  {)] 

+ [1 -- a(1)] [ 1 - ~ ( 1 ) ] [ f ( v ,  tr ~ ~1~ 0"1 ) - f ( a ,  {)] 
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Let /1~, /1~' and //~' be the projections of/~[ on A, { 1 _ -  1} wA, and 
A c){1+ + 1}, respectively. Then verifying (3.1) amounts to verifying the 
equality of the following two expressions: 

and 

where 

uT( l r )+ Z ~(r )+u~"(ro)  (3.2) 
x ~ A I  

~ ' (20 r_ )+  Y" U~(rx.x+l)+~7'(r-12) (3.3) 
x e A 2  

A 1 = {xEA: F(x)= 1, F(x+ 1 ) = 0  or 2} 

w { x E A - :  F ( x ) =  2, F(x+ 1)=0} 

A2= {xEA: F(x)=O or 2, F(x + 1)= 1} 

u {xEA: F(x)=O, F(x+ 1)=2} 

A- =A\{t+} 

F_  =?_k27_k+12" ' ' 2?_12712" ' ' 27k2  

F -  =27_k27_k+12. . .27_12712. . .27k 

F~.x+ 1 = {F(y), y e A ,  y < x }  F(x+ 1 ) r ( x ) { r ( y ) ,  y e A ,  y > x +  1} 

We first show/z~'(1F) = /~" (F -1 2 ) .  Notice that 

/t~'(1F) = p ~ ( a ( - 1 )  = 1) /x~(F)=pZu'~(r)  

On the other hand, 

k - - I  k - - I  

uT'(r-12)= l-I P(Ti) xp(Tkl) = l--I 
i = - - k  i =  - - k  

p(7,) x P(Tk) p2 = p2p~(F) 

where p is the probability measure given by (2.1). Similarly, p~"(F0)= 
tit i ~ /z2(20 _), so we only need to show that the two central sums in (3.2) 

and (3.3) are equal. The first thing to notice is t h a t / ~ ( F )  factors in the 
following way: 

l z~ (F)=m(F)x2 (1 -p ) (2p )k~r ) [ (1 -2 ) ( l - p ) ]  "~m-k~r~ (3.4) 

where re(F) = FI~= -k M(7,), k(F) = ~,~= -k K(?,), and n(F) = 
k tt Zi=_kN(?i) .  The measure /z2(Fx.x+l) factors in a similar way when 

x e A  -\{Y.7=~_k [N(7;) + 1]}. If, moreover, x e  A2, then k(F) =k(Fx,.,+ l) 
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and n(F)=n(Fx.x+~) .  So the last factor in the product  (3.4) for / l~(F)  
" ' F  equals the corresponding one in/z2t x.x+~). 

When 1_ E A 2, we have 

P~(Fx.x+ l) = m(Fx.~+ l) x 2( 1 - p)(,;tp) ktc .... ') 

x [ ( 1 - 2 ) ( 1  - - p ) ] " ( r  ..... ,)-k(,Z ...... ') xp~(tr( -- l) = 1) 

Since in this case k ( F , . . x + ~ ) = k ( F ) - l ,  n ( F x . x + l ) = n ( F ) - l ,  and 
p ~ ( t r ( -  1 ) =  1 ) =  2p, the product  of  the last two terms in the above expres- 
sion equals the last term in (3.4). A similar thing happens when /+ ~A2. 
Hence the factors dependent  on ,l and p in the terms of both  central sums 
in (3.2) and (3.3) are the same and so it is sufficient to verify 

m ( F ) =  ~ m(Fx,~+l)  (3.5 
XEAI x~A2 

This is proven in exactly the same way as (3.5) in ref. 4 (indeed, m here is 
the same object as w in that  paper),  by observing the following properties 
of m, which are inherited from M: 

m(F ' IOF")  = m ( F ' I F " )  + m(F'OF")  

m(F '12F" )  = m(F '2F") ,  m(F'2OF")  = m ( F ' 2 F " )  

The conclusion is that  both  sides in (3.5) equal 

~., m(yk~.. ,  ykj--~.., yk , )  
j: yj= 1,0 

where yf '  (i = 1 ..... m) are the maximal  blocks of  y~ (y,.e {0, 1, 2} ) consti- 
tuting F, that  is, F =  Y~' .-. Y~J..- Ym'ktn �9 

The next result was announced by Derr ida  et al. ~4) and proved by 
Speer t~71 through direct computat ions .  Our  proof  is based on constructing 
the measure #~ by first displaying the first-class particles to the right of the 
origin according to a product  measure and then specifying the positions of 
the second-class particles. The same is done to the left of the origin with the 
empty  sites. 

Proposition 1. Under  #~, the distribution of first-class particles to 
the right of the origin is the product  measure  vp of paramete r  p. Similarly, 
the distribution of holes to the left of the origin is the product  measure 
v ~ _ ;. with parameter  1 - 2. 

Proof. Let a configuration ~/E { 0, 1 } z be given. For  x >t 1, let v/Ix e u 
be the finite configuration q ( l ) r / ( 2 ) . . . v / ( x - 1 )  of  length x - 1  deter- 
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mined by q. For  all x~>l ,  put M(q,x)=M(q[x) and similarly put 
K(q, x) = K(r/[x). For  x~> 1, let 

0 if q(x)= 1 
p(x[q)= 2M(tl, x) 2K~,.x~(I__2)x_K(,,..~_I if q ( X ) = 0  (3.6) 

Notice that p(xlq) depends on q only through sites 1 ..... x. To prove our 
result it suffices to prove that 

p (x l~ )  = 1 (3.7) 
x > 0  

v o almost surely, which is proven in Lemma 3.2 below. The reason is that 
we can interpret p (x [q )  as the probability that the leftmost second-class 
particle to the right of the origin is at site x given that the first-class 
particles are at the sites occupied by 7. To see this, compute,  for instance, 
the probability that the configuration ( =  11010 appears between the 
second-class particle at the origin and the next second-class particle (at 
site 6). According to our  construction, first distribute three first-class 
particles and two holes at sites {1 ..... 5} with probability p3(1 _p)2 .  Then 
put a hole at site 6 with probability 1 - p .  Finally, the conditional proba- 
bility of putting a second-class particle at site 6 given the configuration 
110100... is 

p(6[ 110100...) = 2M(11010) ))(1 - 2) 2 

The resulting distribution is exactly the one given by (2.1). This argument 
can be applied to an arbitrary configuration, but the notat ion is too heavy, 
and hence we omit the details. �9 

Lemma 3.2. Let p(xlq) be defined as in (3.6). Then for all 
O ~ [0, 2] 

p(xltl)= 1 (3.8) 
x > 0  

vp almost surely. Fur thermore,  (3.8) holds for all configurations q ~ { 0, 1 } z 
with a finite number of particles. 

Proof. We first prove the identity (3.8) for configurations t/E {0, 1} z 
with a finite number of particles. Observe that if q(x) = 0 for all x > 0, then 

p(xlq)=2 ~ (1-2)"- '=1 
x>O x>O 

Assume that the identity holds for any configuration with n particles. Let 
q be a configuration with n +  1 particles, whose rightmost particle is 
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located at z > 0. Let r/-" be the configuration r/modified only at site z. Hence 
r/: has n particles. From Lemma 2.3, for x/> z + 2, we have 

M(~I, x) = M(r/:, x -- 1 ) + M(q, x - 1 ) (3.9) 

Divide the sum in (3.8) in two parts: 

: + I  

p ( x l q ) =  ~ p ( x l q ) +  p(x lq)  (3.10) 
x > 0  x = l  x = : + 2  

Apply identity (3.9) to all terms of the second sum of the right-hand side 
of (3.10) to obtain 

p(xlq)= ~. [1- -q(x )]M(q ' - ,X- -1)2K'" ' ' )+ ' (1 - -2 )" - t - -K(" ' "  
. x '=  = -F 2 X = . ' + 2  

o=, 

+ ~. [1- -q(x)]M(r l ,  x - l ) 2 X ( " ' x ) + l ( 1 - 2 )  ~-l-K('~'~) 
X = = + 2  

Since for x >/z + 2, 

K ( q , x ) = K ( q , x - 1 ) = K ( q - ' , x - 1 ) + l  and 1 - r / ( x ) = l - q ( x - 1 ) = l  

we obtain that this sum is equal to 

2 ~. [1--q(X--1)]M(q",X--1)).K('s: '-"--1)+I(1--2) (':-l)-l-r('l='':-I) 
x = z + 2  

+ ( 1 - 2 )  ~ [ 1 - q ( x - l ) ] M ( r / , x - 1 ) 2  x("'x-t)+l 
x = z + 2  

x(1 - 2 )  (x- j )-  l - K(" ' ' -  l) 

Hence 

p ( x l q ) = 2  ~ p ( x [ q : ) + ( 1 - 2 )  ~" p(x[q) (3.11) 
x = z + 2  x = z +  I x = z +  [ 

Observe that for x <~ z, M(q, x) = M(q-, x), K(q, x) = K(q:, x), while 
1 - q ( x ) = l - r f ( x )  for x < z  and 1 - ~ / ( z ) = 0 .  Hence, multiplying by 
(1 - 2 ) +  2 the first z terms of the first sum in the right-hand side of (3.10), 
we obtain 
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p(x lq )=  ( l - A )  p(xlq) 
. x ' = ]  x = l  

+ 2  ~ [1 -q " (x ) ]  M(r/-', x)2x{":''}+l(1 - 2 )  ' -  l-Kl":'-'l 
x = l  

+ 1-1 - -q(z+ 1)] M(q, z+ 1) 

x 2 tr176 + l}+ '(1 - 2) I-'+ l~- t(~,,.-i- l (3.12) 

Now 

M(r/, z +  1)= M(r/-', z) 

K(q, z +  1) = K(q-', z )+  1 

1--r/(z+ 1)= 1-q-'(z)= 1 

Hence the last line equals 2p(zlr/2) and the second plus the third line 
equals 2 ~ , =  ~p(xl qz). So, putting together (3.11) and (3.12), we get 

p(x lq )= (1 -2 )  ~ p(xlr/)--I-2 ~' p(xlrt =) 
x > 0  x > O  x > 0  

(3.13) 

Since the second sum in the right-hand side of (3.13) is one by the 
inductive hypothesis, this completes the induction step. Thus the result 
holds for finite r/. Since the sum of the first n terms in (3.8) depends only 
on g(1) ..... r/(n), the validity of (3.8) for finite r/implies that for any q and 
n >/1, we have ~ =  ~ p(x]q) ~< 1, which in turns implies that for any r/ 

p(xlrl)=c(q)<~ 1 (3.14) 
. ' r  1 

Assume that there exists a set Xo with positive vp probability such that if 
q~Xo, then c(r/)~< c <  1. This and (3.14) imply that 

l> f dva(q) ~ p(xlrl)=P(N<oo)=l 
x = l  

for p~<2 

where N is the random variable whose distribution is given by (2.1) and 
(2.3). The contradiction above proves that (3.8) holds vp almost surely for 
any p~ [-0, 2]. �9 

Remark 3.2. Using the generating function of N given in (2.3), one 
can estimate precisely the rate of convergence of the densities of the 
particles computed by Derrida et al. ~4~ Let (2,,)~ be the random walk 
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on 7/ defined after Lemma 2.3. We say that there is a record at time n >t l 
if 2 ,  > 2j  for all 0 ~<j < n. Hence the probability that under p~ a second- 
class particle is present at site n>t 1 is the probability that the random 
walk (2,,)~ establishes a record at time n. Put Uo = l, and for n>~ 1 let 
u,, = ( 2 - p ) + p ( 1 -  2)ff~(T>~n), where T is the time of the first record or, 
in other words, the hitting time of I. Now (2.3), the relation between N and 
T, and the renewal equation ~5~ imply that u, is precisely the probability 
that a record is established at time n. From the rate of convergence of the 
distribution of T (see remarks to the proofs of Lemmas 2.2 and 2.5) it is 
clear that u,, goes exponentially fast to 2 - p  when 2 >/9 and like n-1/2 
when 2 = p. Since the density of first-class particles to the right of the origin 
is a product measure with constant density/9, this gives also the asymptotic 
density of holes to the right of the origin. Analogous arguments work to 
the left of the origin by observing that the density of holes is 1 - 2. 

4. THE  I N V A R I A N T  M E A S U R E  FOR THE 
T R A N S L A T I O N - I N V A R I A N T  PROCESS 

In this section we assume 0 < p < 2 < 1. Let /~2 be the unique trans- 
lation-invariant measure satisfying P2(" I ~(0) = 1) =/1~(. ). As mentioned in 
the introduction, P2 must be invariant for the two-species process. We 
show next that the measure P2 has good marginals. 

T h e o r e m  3. The a marginal of #2 is vp, while the a + ~ marginal of 
P2 is v;. 

ProoL To construct the measure ~ we started by assigning the posi- 
tions of the second-class particles and then we gave the distribution of the 
first-class particles, given the position of the second-class particles. The 
positions of the second-class particles form a (discrete-time) renewal 
process with finite mean interarrival time, with the first renewal at time 0. 
When p < 2  the average distance between two renewals is ( 2 - p ) - ~  < ~ .  
Hence we can use the key renewal theorem to construct P2 in the following 
way: 

i p~= lim /a2r.~= lim /a2r,.' (4.1) 

where G is the translation by the x operator. To show the theorem, take 
a cylinder function f ( a ,  ~) depending only on tr. Take a negative z such 
that the support of f is contained in (z, ~ ) .  By Proposition l, 

ff2 T : f  = v p f  
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This and (4.1) imply tha t / . t2 f=  vpf.  To show that the a + ~ marginal is va, 
apply the same reasoning for a positive z and show that p 2 f =  va if f 
depends only on a + ~ .  �9 

Our next result exploits the embedded reneval process in both /~2 
and/~2- 

Theorem 4. It is possible to construct a coupling/~2 with marginals 
P2 and p~ such that if (tr, ~, cr', ~') has distribution/~2 and 

H(o-, ~, a', ~ ' ) = ~  Ja(x)--a'(x)J + [~(x)-- ~'(x)l 

is the number of sites where (a, ~) is different from (a', ~'), then, under ~2, 
the random variable H has a finite exponential moment. In other words, 
there exists 0 > 0 such that 

I d/]2 < oo eO H (4.2) 

Proof. Let (a, ~) be a realization of the translation-invariant point 
process related to the point process with distr ibution/4 and Ti the station- 
ary process related to ~. Thus T~ denotes the position of the ith ~ particle, 
where T O <~0 is the position of the rightmost ~ particle to the left of the 
origin. Let (~',~') be a realization of the process with distribution /~ and 
let Si be the renewal process associated to ~', with So = 0 and Si denoting 
the position of the ith ~-' particle. The random variables T ; - T i _ ~  are 
independent and have the same distribution as S~-S~_ ~ for ig= 1, while 
(To, T~) has the limiting distribution 

P(TI > u, -- To > v) = lim P(Sml + 1 - t  > u, t - Sm~ > v) 

where I ( t ) = m a x { i : & < t } .  Similarly, for all cylinder f,  we have 
/-tzf= lira . . . . .  /*~z r x f  Now we construct a coupling (a, ~, a', ~') with the 
property that the two first marginals have distribution/.t2 and the two last 
marginals have distribution/t~. If To = 0, put ( ' (x)  = ((x)  and a '(x) - a(x). 
If Tog=0, let J + = m i n { i > 0 :  S~e~} and J - = m a x { i ~ O : S i e ~ } ,  and 
let 

f(~r{x),~'x)) if x>~J + or x ~ J -  
(~'(x)'r g(x))~;'-'" i f  s - < x < J  + 

It is clear that the resulting distribution of (a, {, a', {') has marginals /~2 
and /g,. To show (4.2), notice that under/~2, we have H<~J + - J - .  Since 
To and T~ have a finite exponential moment, it follows from ref. 14, 
pp. 30-31, that both J+ and IJ-I  have a finite exponential moment. �9 
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5. S H O C K S  IN THE  S I M P L E  EXCLUSION PROCESS 

If we take the process as seen from a second-class particle and 
identify particles of both classes to the right of the origin and second-class 
particles with holes to the left of it, we get q',, the simple exclusion process 
as seen from an isolated second-class particle. Rigorously, Lemma 3.1 says 
that the process q', :=  rx, q, = ~ ~u_ 1 TXt(at ~- ~t)  is the SEP as seen from a 
second-class particle. We consider the shock measure constructed in the 
remark after Theorem 2 of Section 3. Let/~' = qs~ ~ t/~2. For  0 < p ~< 2 < 1, 
it follows from Theorem 2 that /~' is invariant for the process q',. Notice 
that X, can be seen as either a tagged second-class particle for the (a,,  4,) 
process or as an isolated second-class particle for the r/, process. Our  next 
result implies in particular that, for 0 < p < 2 < 1, the measure ~' is equiv- 
alent to vp.;., the product  measure with densities p and 2 to the left and 
right of the origin, respectively. 

T h e o r e m  5. If 0 < p <) .  < 1, it is possible to construct jointly the 
invariant measure/~ and the product  measure vp.~. in such a way that the 
number of sites where the configurations differ has a finite exponential 
moment.  

ProoL First we construct a configuration with distribution vp.~. using 
two independent configurations with distribution ,u 2. Let (tr § ~+) and 
( a - ,  4 - ) be two independent realizations of #2 and (a', 4') a realization of 
/~, independent of the other two. Define r/~ {0, 1 } by letting 

{ ;+_(x)+  4+(x)  if x~>O 
r/(x) = (x) if x < 0 

for all x ~ ~'. Then, by the marginal properties of/12 given by Theorem 3, 
it is easy to see that r/ constructed above has distribution vp.a. Here it is 
important  that we take independent realizations of P2 to the right and left 
of the origin. Now couple ( a + , ~  +) with (tr ' ,~') as in the proof  of 
Theorem 4, letting J+  be the leftmost positive site where (a +, r  is dif- 
ferent from (~', r Similarly, couple to the left of the origin letting J -  be 
the rightmost negative site where ( a - ,  4 -  ) differs from (tr', 4'). By the same 
argument as before, J+  and J -  have a finite exponential moment.  Hence, 
setting r/' = ~ t  ~ - r (  tr', ~'), we get 

~'. I ~ ' ( x ) - ~ ( x ) l  ~<J+ - J -  
x 

The result now follows again from Lindvall. 1~41 �9 
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An immedia te  consequence of the result above  is the following. 

Corollary. The measures F '  and vp.;. are equivalent ,  i.e., one is 
absolutely cont inuous  with respect to the other. 

Proof .  Since under  both  measures all nonempty  cylinder sets have 
posit ive probabi l i ty ,  and nonempty  sets of measure  zero depend  on 
infinitely many  coordinates ,  the corol lary  follows from Theorem 4. �9 
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